
JOURNAL OF COMPUTATIONAL PHYSICS lo& 179-187 (1992) 

Low-Order Polynomial Approximation of Propagators for the 
Time-Dependent Schrijdinger Equation 

HILLEL TAL-EZER 

Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel 

RONNIE KOSLOFF 

Department of Physical Chemistry and the Fritz Haber Institute, Jerusalem 91904, Israel 

AND 

CHARLES CERJAN 

Lawrence Livermore National Laboratory, Livermore, California 94550 

Received January 10, 1990; revised May 8, 1991 

Polynomial approximations for propagating the time-dependent 
Schrodinger equation are studied. These methods are motivated by the 
numerical demands of systems with time-dependent Hamiltonian 
operators. First-order and second-order Magnus expansions are tested 
for approximating the time ordering operator. The polynomials 
considered are based on a reduced basis space which is obtained by 
iterating the Hamiltonian operator on an initial wavefunction. The 
approximate polynomials are obtained by minimizing the error in the 
propagation. One such approach which minimizes the residuum out- 
side the reduced space is proved to be equivalent to the short time 
iterative Lanczos procedure. A second approach which uses a different 
optimization scheme (the residuum method) is found to be somewhat 
superior to the Lanczos procedure. Numerical examples are used to 
illustrate the convergence of these methods. The second-order Magnus 
approximation is found to be a significant improvement over the first- 
order approximation regardless of method. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Simulations of molecular and atomic phenomena based 
on a time-dependent approach lend substantial insight into 
these complex problems. These simulations are particularly 
useful when the problem has explicit time dependence-as 
in photodissociation or photoionization in a time varying 
field. Efficient means of constructing such simulations have 
a direct bearing on the scope of phenomena that can be 
studied. This study deals with the problem of approximating 
the time propagation operator. Much of the previous work 
in this vein was summarized in [ 11, which was mainly con- 
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cerned with comparing the different approaches. This paper 
concentrates on the theory and application of low-order 
polynomial approximations for the evolution operator. 

A time-dependent quantum mechanical approach to 
molecular dynamics [2] has many advantages over time- 
independent alternatives, such as the ease of physical inter- 
pretation, but for phenomena which have explicit time 
dependence the method becomes overwhelmingly superior. 
Explicit time dependence arises in many physical problems. 
A useful description of photochemical problems in strong 
fields involves a time-dependent driving potential or a time- 
dependent vector field [3], 

ii@, i)=g&A(i))i+v(x). (1.1) 

A typical situation in strong fields is that the energy stored 
in the vector field (fi’e’/c*) A2(f)/2M is two orders of 
magnitude larger than the ionization energy. This requires a 
very small time step which is much larger than a typical 
driving frequency. 

Another important class of problems arises from the use 
of the time-dependent self-consistent field (TDSCF) [4] 
approximation which transforms the original linear 
Schrodinger equation to coupled nonlinear differential 
equations. The TDSCF framework allows the possibility of 
mixing different types of solutions for different degrees of 
freedom. For example, for helium atom scattering from a 
crystalline surface the transitional degrees of freedom can be 
treated quantum mechanically and the surface motion 
classically [3]. All TDSCF approximations lead to an 
effective time-dependent Hamiltonian for each degree of 
freedom. 
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Another class of problems involves systems which 
inherently have more than one characteristic time scale. 
This is common for molecules which have a large range of 
coupling frequencies or when electronic and vibrational 
degrees of freedom are considered simultaneously. For these 
systems one would want to avoid propagating with a time 
step corresponding to the fastest motion. A common feature 
of these problems with a time step corresponding to the 
fastest motionA common feature of these problems is that 
they require repetition of a relatively short propagation 
many times. Motivated by these problems a search for an 
accurate and efficient propagator was initiated. 

This study is based on the time dependent Schrodinger 
equation 

ifi a*(t) -- IQ(t) at (1.2) 

which is a member of a more general class of equations 

where A is a linear operator. Similar equations include the 
Liouville-von Neumann equation [6], the paraxial equa- 
tion [7], and the heat or diffusion equation [8]. The 
Schriidinger equation has the formal solution 

u(t)=0(t)u(0)=e-“‘~)%(0), (1.4) 

where 0 is the evolution operator. If H has explicit time 
dependence then 

o(t) = Te -(+) 
f 

’ fi( t’) dt’, (1.5) 
0 

where T is the time ordering operator. The lowest order 
solution to this problem is to split the evolution operator 
into a product of short time propagators for which the 
Hamiltonian operator H(t) is almost constant, 

Q(t, 0) = n ml+, 3 t,), (1.6) 
n 

where t, = n At. For each step, the evolution operator is 
approximated by an exponential form 

O(t n + , , t,) z eoi. (1.7) 

The operator bi can be the first Magnus approximation [9] 

Q1= -;J’^+‘A(t’)dr’ 
fn 

or the second Magnus approximation [9] 

02&jl--&rLi~dtqf’ [A(t’), ii( dt”. (1.9). 
1” 1” 

The approximation of the commutator inherent in Eqs 
(1.8) and (1.9) limits the maximum size of the time step 
Two distinct approximations are thus made in the applica. 
tion of the evolution operator: the numerical representatior 
of the operators on a grid and a truncation of the corn. 
mutator series in the formal expansion of the time-ordered 
operator. 

These considerations lead to a common procedure 
in which the evolution operator becomes a product oi 
exponentioned operators. In this paper the merits of a low 
order polynomial approximation to this exponentiation are 
considered, 

e@z f a,(t)Pn(Oi). (1.10) 
n=O 

The problem addressed is to find the optimum polynomials 
P, and their expansion coefficients a,. 

2. BACKGROUND 

Let 6 be a Hermitian linear operator and F(z) a function 
analytic in a domain D in the complex plane which includes 
all the eigenvalues of 8. Let w be the vector which results 
from operating with F(6) on a vector u, 

w = [F(O)] u. (2.1) 

If P,(z) is a polynomial approximation of order m of F(z), 
w can be approximated by w,, 

w, = [P,(O)] u. 

The error vector is 

rm=w-wW, = [F(6) - P,(O)] u. 

Assume now that 6 is finite-dimensional 

(2.2) 

(2.3) 

and has a 
complete set of eigenvectors ui, . . . . u,,, with corresponding 
eigenvalues, A,, . . . . AN. Then v can be expanded in this set, 

N 

v= c akvk, 

where ak are the expansion coeffkients and the error vector 
becomes 

rm= 5 ak[F(nk)-Pm(lk)l vkb 
k=l 

(2.5) 
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Observing (2.5), it is obvious that by choosing P,(z) which 
interpolates F(z) at the eigenvalue points ik, k = 1, . . . . N, 
the error will vanish. This is a manifestation of the Cayleyy 
Hamilton theorem, since every N-dimensional linear 
operator satisfies its Nth order characteristic polynomial 
equation. This is a theoretical and impractical observation, 
since it requires the knowledge of all the eigenvalues, which 
is equivalent to solving the original problem. Moreover, if N 
is large (what we actually have in practice), it results in a 
very high degree interpolating polynomial which will lead to 
a time-consuming algorithm. A more practical approach is 
to settle for P,(z) which interpolates F(z) in m + 1 (m -@ N) 
points such that max,, D IF(z)- P,(z)\ is small. This 
approach was taken in [lo]. It requires an a priori estimate 
of the domain D. (The algorithms given there require the 
vertices of a polygon in the complex plane which includes all 
the eigenvalues of 8.) These techniques would be adequate 
for time-independent propagation schemes and have been 
demonstrated for the Chebyshev algorithm [ 11. 

When this information is not at our disposal, we have to 
resort to other techniques. An algorithm which utilizes poly- 
nomial interpolation and is free of the requirement to know 
D is given in [ 111. It is based on looking for P,(z) which 
interpolates F(z) at m + 1 points such that r, is minimized 
in some sense. Since the minimization process is done on the 
error vector itself, we obtain a set of interpolating points 
which depend on the vector u on which we operate. Using 
this approach, one does not have to know D and, some- 
times, the results are more accurate than the results 
produced by the previous method [ 101. This phenomenon 
is explained by the following observation. In [lo], the error 
function E(z) = F(z) - P,(z) has a uniform behavior in D. 
Thus, the method does not take into account a possible 
nonuniformity in the expansion coefficients ak’s (2.5). The 
new algorithm is constructed within the vector subspace 
generated by the action of a linear operator on an initial 
vector u = +(O). This subspace, called the Krylov subspace 
of order (m + l), is generated by the linear operator 6, 

uj = Oj$(O), (2.6) 

where the uj span a projected or reduced subspace of the 
original infinite-dimensional space. The new algorithm has 
a “focusing nature.” It puts interpolating points in areas in 
the domain of eigenvalues D where they are “most needed”. 
Obviously, the error function E(z) is nonuniform. In 
Section 3a description of the algorithm is presented, and in 
Section 4 it will be shown that one variant of this algorithm 
is exactly the Lanczos method [ 1, 121. 

3. RESIDUUM MINIMIZATION 

The approach is to minimize the error or the residuum 
produced by the polynomial approximation. The differences 

in error estimation lead to two slightly different propagation 
methods. 

Method I. Let zO, . . . . z, be m + 1 distinct interpolating 
points; then the interpolating polynomial in Newton form is 

P,(z)= f akRk(z), 
k=O 

where ak are the divided differences [ 141 

ak = F[z,, . . . . zk] 

and 

R,(z) = 1 

k-l 

R&(Z)= n (z--i), k= 1,. 
ISO 

.., 

(3.1) 

(3.2) 

(3.3) 

m+ 1. (3.4) 

The error function E(z) = l;(z) - P,(z) is given by 

E(z) = am + 1(z) R, + 1(z)y (3.5) 

where 

a m+ l(Z) = azo, . . . . z,, 21. (3.6) 

Using (3.5), the error vector r, (2.3) can be written as 

r,=q6)u=a,+,(6)R,+,(6)u=a,+,(6)7,, (3.7) 

where 

?M=R,+,(6)u. (3.8) 

Full minimization of the &-norm of r,, 11 rmll can be very 
complicated due to the dependence of a, + , on 6. Thus the 
values z& are chosen so that R,, i yields a minimization of 
/l?,J. R,, i(z) can be written as 

m+l 

R n~+l(~)= c Yk+lZk, (3.9) 
k=O 

where 

Ym+2= 1. (3.10) 

Using (3.8) and (3.9) one obtains 

lFml12= (~,lr”,> =wy,, . . . . Ym+l). (3.11) 
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Thus, in order to minimize IIF,,,, one has to solve the where 
following set of m + 1 linear equations 

dh-O ayi- ’ i = 1, . . . . m + 1. (3.12) 

m+l 

em+ i(z) = 1 SkZkt 
k=O 

do= 1. 

(3.18) 

(3.19) 

The matrix representation of (3.12) is 

fO=B, 

Hence, for the function F(8) = 8 PI a full minimization o 

(3.13) 
the vector &E(8) u = 6r, is possible. In this case one has tc 
solve the set of equations 

where H is a Hermitian matrix satisfying Z&=/l, (3.20) 

H,= (8’0~6’0), 1 

and 

Gi, j<m+l, (3.14) where fi is a Hermitian matrix satisfying 

A,= (Siv~6’u), lgi, jdm+l (3.21) 

l<i<m+l. (3.15) and 

(Notice that the matrix H, is the Hamiltonian matrix 
jJi= -(Q’ulv) ldi<m+l. (3.22) 

representation in the reduced basis set of the Krylov space). 
Once the solution to the linear system (3.13) is known one 

In practice, as will be seen in Section 5, it was found that, 

proceeds by computing the roots of R, + i(z) which are the 
using (3.20) instead of (3.13), gave equivalent or better 

desired interpolating points. Then the divided differences 
results for approximating the evolution operator. Once the 

(3.2) are calculated and the interpolating polynomial P,(z) 
solution to the linear system (3.20) is known the algorithm 

is obtained. The approximated vector W, = P,(~)v is 
proceeds as in Method 1. 

computed by the following algorithm. 

ALGORITHM 3.1. 

For i= 1, . . . . m do 

end do 

r=v 

w=uor 

r=(o-ziJ)r 

w=w+a,r. 

w,=w. 

4. LANCZOS METHOD 

In Ref. [l] as well as in Ref. [12], an algorithm for 
solving the Schrodinger equation based on Lanczos method 
[13] was described. The method can be presented as 
follows. Let S be the Krylov subspace 

s= (u, 6u, . ..) w-u}, (4.1) 

where 6, + , is the (m + 1) x (m + 1) matrix representation 
of P8 and P is an I,-orthogonal projection operator on S. 
Then 

i=j+l, l<jdm 

l<i<m+l, j=m+l 

Method II. For the particular function F(z) = l/z it can 
otherwise, 

be verified that where 

.^i1(2)=~;oy1. (3.16) -((a,u+ ... +a,omo)=P(8m+1u). (4.2) 
m 

Observe that if one defines 
Thus 

z&)=(1-;)--.(l-;)=Qm+i(z), (3.17) 

a= [a,, . ..) urn-Jr (4.3) 

then a = y, where y is the solution of (3.13). 
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Now, if 

define 

where 

so that 

the roots of the characteristic polynomial of 6, + i . Assume 
now that the roots are distinct and designated zO, . . . . z,. The 

(4.4) next lemma gives the elements of T-l. 

LEMMA 4.2. T-’ is Vandermonde’s matrix whose 
elements are 

(4.5) T,i’ = z{r; > I<i, j<m+l (4.14) 

us= [l,O, . ..) o]=, 
(the superscript above z indicates power). 

(4.6) ProoJ: Define the matrix Q, 

(4.7) One has 

Q,=z{:;. (4.15) 

The subscript S denotes a representation of a vector in the 
space S, defined in Eq. (4.1); the subscript 1 specifies the first 
column. The polynomial approximation of F(8) based on 
the Lanczos method is 

m+l 
(Qom+ I)q= 1 Qin(om+ l)nj 

II=1 

m+l 

(4.16) 

PF”(O)u = f (ws)i 65. 
i=O 

(4.8) Hence 

The vector ws is computed as follows. If T is the matrix 
which diagonalizes 6, + i, 

T-l0 ,,,+iT=A, (4.9) 

(Q&n+dq= 

i 

zj-1, l<jdm 
m+l 

j=m+ 1. 

then Since the zi are the roots of the characteristic polynomial 
one obtains 

F(;(a m+l)= TF(A) T-l. (4.10) 

Hence 

ws= CF(@n+l III= TF(~)(T-‘h. (4.11) or 

The next section will show the equivalence of Method I 
described in Section 2 and the Lanczos method. To this end 
the following two lemmas are needed. Since 

LEMMA 4.1. The characteristic polynomial of 6, + 1 is 

m+l 

C,(A)= C ajAJ (a,,, = 1). (4.12) then 
j=O 

Proof One has 
Thus 

IAl-o,,,, l=~l~ii-Q,~+(-l)“aO(-l)“, (4.13) 

where the last column of 6, is [-a,, . . . . -a,]? Using . . 

T-‘=Q (4.20) 

induction one obtains the desired result. and the proof is concluded. 

Since a = y, the interpolating points used in Method I are Based on these two lemmas the following theorem holds 

l<jdm 
j=m+l 

(Q@n+,,,=zj-1, l<i, j<m+l. (4.17) 

Aii=Zj-ly l<idm+l, (4.18) 

Q6 ,+l=AQ. (4.19) 
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Pf;;a”(O) = P,(O), (4.21) 

where the roots zO, . . . . z, are distinct, Pm(o) is the 
polynomial approximation of F(b) which results from using 
Method I, and P?(6) is the polynomial approximation 
based on the Lanczos method, 

Proof Let 

P,(z) = f a,,‘. (4.22) 
i=O 

One has 

a,+a,z,+ . . . + a,zT = F(z,), Cl< j<m. (4.23) 

Writing (4.23) in matrix form results in 

where 

T-‘a=F(A)e=F(A)(T-‘),, (4.24) 

Hence 

a = [a,, . . . . a,]=, e= [l, . . . . 117 (4.25) 

a=TF(A)T-‘=w, (4.26) 

and the proof is concluded. 

Examining the differences between the two algorithms 
one finds that in the Lanczos algorithm the procedure 
minimizes the projection of the operator outside the Krylov 
subspace. The Krylov subspace is then used in order to con- 
struct the approximation for the function F(6) regardless of 
the function. Method II includes some information about 
the form of the function, because of the specific choice 
made; nevertheless the approximation is not tailored for 
the exponential operator. Its utility must be verified by 
examining representative problems. 

5. RESULTS 

There are two sources of error in the time propagation: 
the second-order Magnus approximation and the error 
induced by the truncated polynomial representation. The 
accuracy in the second-order Magnus expansion, as com- 
pared to the first order, was first investigated. 

In order to check an explicitly time-dependent problem 
a linearly driven harmonic oscillator was chosen. The 
Hamiltonian has the form 

fi=&+fk$‘+iCIesin t. (5.1) 

-6.O- 

c 
-7.o- 

i? 

2 
-8.O- 

g -9.o- 

-lO.O- 

-11.0 ! 
-2.0 

1 I 
-1.0 0.0 1.0 2.0 

log(time) 

FIG. 1. A comparison of the first- and second-order Magnus 
accumulated logarithmic amplitude error for a fifth-order interpolating 
polynomial using the residuum procedure. The error is defined to be the 
absolute value of the difference between the exact and numerical result. In 
this figure, a driven harmonic oscillator was evaluated. 

A resonant driving field was chosen by using M= 1 and 
k = 1. In this case an analytic solution for the dynamics can 
be obtained. The wavefunction-averaged amplitude (4 ) 
was chosen for comparison, 

(Q(t)) = +e(t cos t-sin t) (5.2) 

where (Q)(O) = 0 and the oscillator starts from the ground 

-2.0 , 
4 ^ . . 

Second order 

First order 

N=5 

N=5 
. 

3.0 4.0 5.0 

log(fft calls) 
FIG. 2. The logarithm of the maximum error as a function of numeri- 

cal effort which is given by the number of calls to the FFT routines. The 
errors were estimated by applying a linear tit to the maximum eror in each 
oscillator cycle. The first-order results have an approximate quadratic 
functionality. 
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state. A grid of 128 points was used with a grid spacing of 
0.2 Bohr. The spectral range of the grid becomes 205.3 
hartrees, which means that after 16 cycles with a power 
of E = 0.25, the maximum possible average position 
represented on this grid-12.8 Bohr-is reached. 

For a particular time-dependent problem one has to 
consider when to use the higher-order Magnus approxima- 
tion. The numerical effort involved in the second Magnus 
approximation is twice that of the first-order approxima- 
tion. (This numerical effort can be reduced to a factor of 1.5 
by storing the first and second derivatives of the potential). 
The high-order expansion is worthwhile if the time step can 
at least be doubled. Figure 1 shows the error as a function 
of time for the first- and second-order Magnus approxima- 
tion. The time steps were set such that the numerical effort 

a 
0.0 

-2.0 

-4.0 

-6.0 

-8.0 

,lO.O I 

N=3 

-12.0 I 
2.5 3.5 4.5 

log(fft calls) 

C -2.0 

-4.0 

-6.0 

-8.0 

-10.0 

-12.0 

-14.0 

is approximately the same for both orders. The error shows 
an oscillatory behavior. For the first-order results this error 
is superimposed on a linear relationcaused by the accumula- 
tion of errors. Examining the corresponding case in Fig. 2, 
which displays the logarithm of the error as a function of the 
logarithm of the numerical effort, a quadratic scaling rela- 
tion is found for the error with respect to At. This means 
that the source of error is the Magnus series truncation, 
and that the ffth-order polynomial is already converged. 
The second-order Magnus runs show a different behavior. 
For about 13 cycles the error shows no dependence on time 
because of the saturation of the error at the level of 10e9. 
The error is two orders of magnitude less than the tirst- 
order run for the same numerical effort. After about 13 
cycles the error due to overflowing the spectral range of 

b 1.0 I 

-11.0 ! 
2.5 

b 
I I 

3.5 4.5 

log(fft calls) 

3.5 3.6 3.7 3.8 3.9 4.0 
log(fft calls) 

FIG. 3. (a) Convergence of the residuum algorithm as a function of polynomial order for the logarithm of the phase error for a bound state in a Morse 
oscillator-propagated 2400 atomic time units. The parameters are given in Ref. [l J. (b) Convergence of the Lanczos algorithm as a function ofpolynomial 
order for the logarithmic phase error as in Fig. 3a. (c) Comparison between the residuum and Lanczos algorithms for the logarithmic phase error as in 
Fig. 3a for polynomial order 7. 
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2.07 I 

o.o- 

-2.0 - 
& 
k -4.0 - w 
0” 

-6.0 - 

-1.0 0.0 1 .o 2.0 

log(time) 

FIG. 4. The logarithmic position error for the second-order Magnus 
approximation to the forced oscillator problem are compared for the 
residuum and Lanczos methods as a function of time. The parameters for 
the calculation are the same as those used in Figs. 1 and 2. 

the grid starts to dominate so the total error increases. 
Increasing the number of grid points which increases the 
spectral range will postpone this error. This behavior can be 
seen in Fig. 2: the results show very rapid convergence 
which is controlled by the polynomial approximation. 

The second set of runs compared the two optimization 
methods. A Morse oscillator was used for this comparison 
with the same parameters as those used in Ref. [ 11. Figures 
3a and b show the convergence of the different polynomial 
approximations with respect to the numerical effort 
involved for the residuum and Lanczos algorithms. The low 
order (N= 3) residuum polynomial is approximately 10 
times more efficient for the same accuracy than the Lanczos 
algorithm. Similar results are found for orders 5 and 7 with 
an even greater disparity in the accuracy afforded for the 
same numerical effort. Figure 3c contains a comparison of 
the converged, order 7, results. The difference in accuracy is 
at least several orders of magnitude over the range 
calculated. 

The driven oscillator example was used to compare the 
behavior of the residuum and Lanczos methods for an 
explicitly time-dependent problem. The second-order 
Magnus approximation was calculated in a fifth-order 
scheme for both methods. The results of this computation 
are plotted in Fig. 4. 

6. DISCUSSION 

Three sources of error have been mentioned: grid size, 
time propagation (exponentiation), and time ordering. 
Efficient calculations should balance all the errors. The 
Fourier representation is known to be a highly convergent 

method, thus an efficient time propagation scheme must 
complement its use. Otherwise the calculation is unbalanced 
in its error treatment and thus inefficient. It has been shown 
here and in Ref. [ 11, that a short optimized polynomial 
approximation has extremely rapid convergence. Therefore 
the combined use of the Fourier representation has 
extremely rapid convergence. Therefore the combined use of 
the Fourier representation and these algorithms leads 
to a balanced calculation. For explicitly time-dependent 
problems, it might happen that truncation of the time 
ordering error can dominate the error. This behavior is 
demonstrated in Section 5 where the first-order Magnus 
approximation is used. The first-order calculation shows 
quadratic convergence, whereas the second-order Magnus 
approximation resulted in a balanced, highly accurate 
numerical result. 

The behavior of the residuum and Lanczos methods are 
compared for the driven oscillator problem in Fig. 4. In this 
figure, the second-order Magnus approximations was used 
to evaluate the time evolution as in Fig. 1. The error over- 
whelms the spatial grid representation by the time 10 atomic 
time units are reached. For this problem, the residuum 
method is significantly superior to the Lanczos method 
before the error saturates. Thus, the time-independent and 
time-dependent model problems reveal the same trends: the 
residuum algorithm is more efficient than the Lanczos algo- 
rithm. The underlaying reason for the greater efficiency of 
the residuum algorithm is not obvious; indeed, it might not 
always be the case, though it has been observed in other 
driven oscillator systems [16]. The generality of this 
conclusion is under investigation. 

A further comment concerning the differences between 
the two methods should be made. The Lanczos algorithm 
is explicitly unitary-it conserves both normalization and 
average energy. The residuum method is not unitary. 
Though inherent stability is a desirable feature of any 
propagation algorithm, practically speaking it does not 
matter if the accuracy of the method is sufficiently great. 
Furthermore, departure from unitarity can be used as a 
measure of numerical error. Also, both methods can be used 
in a variable time stepping scheme which can offer signifi- 
cant advantages for problems with differing timescales. 
Extensions to higher dimensions are straightforward for 
either algorithm and have been applied to multi-dimen- 
sional systems [ 151. 
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